
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

9

Queue Implementation through
Linked List

2

Queue implementation using Linked List
– In Linked List implementation data will be stored in Linked List

Nodes.
– We will have two pointers Front and Rear.

– The question is Should we use Singly Linked List or Doubly
Linked List?

– Should Front be pointing to Head of the Linked List and Rear
point to the End of the Linked List or vice verse?

– These decisions need to be made for efficient operations of
Queue – i.e. Enqueue and Dequeue operations.

– We will use singly linked and not doubly linked list as as we don’t
need traversal in both directions.

– For singly linked list the Insert operation works in constant time for
both ends (front and end).

– For single linked list the Remove operation works in constant time
only at the Front, and not in the End of the linked list.
• Because in remove operation in singly list, we need to traverse all the

way to the second last node to remove node from the end of the list.
– It, therefore, makes sense to make head of the linked list the Front

of the queue for dequeue operations.
– Enqueue will be performed at the End of the linked list. So the End

of the linked list become Rear of the Queue.,

2

4

 This figure shows queue implemented using linked
list with front and rear pointers.

 The front element is removed with dequeue()
operation.

2

The figure of the queue showing one element removal is
also depicted in the next figure. Note that the Front pointer
has moved to the next element with value 7 in the list after
removing the front element.

Delete / dequeue Algorithm

// if there was only one Node, and it
was dequeued then update the Rear
point to Null as well.

Dequeue Algorithm Version 2

8

9

Insert / enqueue Algorithm

// if this new node is the first node,
rear == Null when node is empty

Enqueue Algorithm Version 2

11

Priority Queue

12

Priority Queue
 As stated earlier, the queue is a FIFO (First in first out)

structure.
 Practically, all elements of a queue does not have equal priority.

Some elements may have higher priority than others. This
means elements with higher priority will leave earlier than
elements with lower priority.
 Priority Queue is a queue where some elements have higher

priority than other.
– In Operating system the process scheduling is implemented by

Priority Queue where some processes have higher priority than
others.

 FIFO is a special case of priority queue in which priority is given
to the time of arrival. Element that comes first has higher priority
than remaining elements.

 Priority Queue is a data structure where each
element has been assigned a priority and such that
the order in which elements are deleted comes from
the following rules:
– 1. An elements of higher priority is processed

before any element of lower priority
– 2. Two elements with the same priority are

processed according to the order in which
they were added.

14

 Priority Queues are two types
– Ascending priority queues

• Priority queues where elements having smallest priority
values is processed and removed first

– Descending Priority Queues
• Priority queues where elements have highest priority

values are processed and removed first

A stack could be considered as Descending Priority
Queue where elements added latest have greatest
time value and are therefore deleted first.

15

 Priority Queue can be implemented in two ways
– One way linked list
– Multiple queues

16

One-way List Representation
 In list implementation the priority queue is

implemented in the following way.

 Each node in the list will contain three items.
– Information fields,
– the priority field and
– the link field

 A node X precedes a node Y in the list, when X has
higher priority than Y or both have the same priority
but X was added to the list before Y

 A lower priority number mean higher priority. 17

 In one ways list implementation of the priority queue
is that an element with highest priority is always in
the beginning of the list.

 This is done through Insert algorithm

18

 Simple Algorithm:
– Add element ITEM with priority number N

1. Traverse the one-way list until finding a node X
whose priority number exceeds N. Insert the ITEM
in front of node X

2. If no such node is found, insert ITEM as the last
element of the list.

19

Linked Implementation: INSERT Algorithm

This algorithm takes as input data value Data and
priority P as input and inserts a new node in a priority
queue.

Front pointer points to the start of the queue. There is
no need for the rear pointer, as nodes are not added at
the rear of the queue.

PREVIOUS and CURRENT are also the QUEUE
pointers.

20

21

Linked Implementation: Delete Algorithm
This algorithm deletes element from Priority Queue from the front.
START points to start of queue. DATA is the value to deleted.

If (Front == NULL)
Write Underflow
Exit

Current = Front
DATA = CURRENT -> INFO
Front = Front  NEXT
FREE or DELETE Current
Exit

22

	Slide Number 1
	Slide Number 2
	Queue implementation using Linked List
	Slide Number 4
	Slide Number 5
	Slide Number 6
	
	Dequeue Algorithm Version 2
	Slide Number 9
	Insert / enqueue Algorithm
	Enqueue Algorithm Version 2
	Priority Queue
	Priority Queue
	Slide Number 14
	Slide Number 15
	Slide Number 16
	One-way List Representation
	Slide Number 18
	Slide Number 19
	Linked Implementation: INSERT Algorithm
	Slide Number 21
	Linked Implementation: Delete Algorithm

